Use of phenylboronic acids to investigate boron function in plants. Possible role of boron in transvacuolar cytoplasmic strands and cell-to-wall adhesion.
نویسندگان
چکیده
The only defined physiological role of boron in plants is as a cross-linking molecule involving reversible covalent bonds with cis-diols on either side of borate. Boronic acids, which form the same reversible bonds with cis-diols but cannot cross-link two molecules, were used to selectively disrupt boron function in plants. In cultured tobacco (Nicotiana tabacum cv BY-2) cells, addition of boronic acids caused the disruption of cytoplasmic strands and cell-to-cell wall detachment. The effect of the boronic acids could be relieved by the addition of boron-complexing sugars and was proportional to the boronic acid-binding strength of the sugar. Experiments with germinating petunia (Petunia hybrida) pollen and boronate-affinity chromatography showed that boronic acids and boron compete for the same binding sites. The boronic acids appear to specifically disrupt or prevent borate-dependent cross-links important for the structural integrity of the cell, including the organization of transvacuolar cytoplasmic strands. Boron likely plays a structural role in the plant cytoskeleton. We conclude that boronic acids can be used to rapidly and reversibly induce boron deficiency-like responses and therefore are useful tools for investigating boron function in plants.
منابع مشابه
Changes of major wall polysaccharides and glycoproteins of tobacco cells in response to excess boron
Effects of excess concentrations of boron on major cell wall components of tobacco cells(Nicotiana tabacum L. cv. Burley 21) were studied. Pectin, xyloglucan, hydroxyproline-richglycoproteins (extensin), and arabinogalactan proteins were characterized. Results showedthat increased boron supply resulted in significant decrease in cell and cell wall dry weights.Also, high concentrations of boron ...
متن کاملInduction of Phenolic Compounds is Affected by Boron Supply in Marshmallow (Althaea officinalis L. ) Cells
Boron (B) is a non-metal micronutrient which is essential for plants growth and development. Formation of boron complex with cell wall matrix and phenolic compounds is a definite influence of boron in physiological process. It has been suggested that B-toxicity and deficiency may induce excess production of reactive oxygen species thereby promote defense responses by antioxidant enzymes or non-...
متن کاملAddition of Phenylboronic Acid to Malus domestica Pollen Tubes Alters Calcium Dynamics, Disrupts Actin Filaments and Affects Cell Wall Architecture.
A key role of boron in plants is to cross-link the cell wall pectic polysaccharide rhamnogalacturonan-II (RG-II) through borate diester linkages. Phenylboronic acid (PBA) can form the same reversible ester bonds but cannot cross-link two molecules, so can be used as an antagonist to study the function of boron. This study aimed to evaluate the effect of PBA on apple (Malus domestica) pollen tub...
متن کاملRole of Boron in Vascular Plants and Response Mechanisms to Boron Stresses
To date, the primordial function of boron is its structural role in the cell wall through stabilization of molecules containing cis-diol groups (borate esters with apiose residues of rhamnogalacturonan II). Nonetheless, boron is a micronutrient also involved in a great variety of physiological processes in vascular plants. However the mechanisms underlying the various metabolic disorders caused...
متن کاملThe effect of zinc sulfate under boron toxicity conditions on some morphophysiological and biochemical properties of grapevine (Vitis vinifera L.)
Boron is an essential plant micronutrient that is involved in the cell wall and membrane structure and functioinig. Boron is often found in high concentrations in association with agriculture in arid and semi-arid regions. In order to investigate the effect of zinc sulfate on some morphological, physiological and biochemical characteristics of two grapvine cultivars under toxicity of boron, a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 136 2 شماره
صفحات -
تاریخ انتشار 2004